
Bilkent University
Department of Computer Engineering

Senior Design Project
T2320
BilRide

Design Project Final Report

21702587, Turgut Alp Edis, alp.edis@ug.bilkent.edu.tr
21703556, İdil Yılmaz, idil.yilmaz@ug.bilkent.edu.tr
21602059, Dilay Yiğit, dilay.yigit@ug.bilkent.edu.tr

21702331, Doğukan Ertunga Kurnaz,
ertunga.kurnaz@ug.bilkent.edu.tr

21801861, Funda Tan, funda.tan@ug.bilkent.edu.tr
Prof. Dr. İbrahim Körpeoğlu

Erhan Dolak and Tağmaç Topal

2023-05-18

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of
the requirements of the Senior Design Project course CS491/2.

mailto:alp.edis@ug.bilkent.edu.tr
mailto:idil.yilmaz@ug.bilkent.edu.tr
mailto:dilay.yigit@ug.bilkent.edu.tr
mailto:ertunga.kurnaz@ug.bilkent.edu.tr
mailto:funda.tan@ug.bilkent.edu.tr


Contents

1 Introduction 4
2 Requirements Details 5

2.1 Overview 5
2.2 Functional Requirements 5

2.2.1 Functionalities of the Application 5
2.2.1.1 All Users Functionalities 5
2.2.1.2 Passenger Functionalities 6
2.2.1.3 Driver Functionalities 7

2.2.2 Functionalities of the Server 7
2.3 Non-functional Requirements 8

2.3.1 Usability 8
2.3.2 Supportability 8
2.3.3 Maintainability 9
2.3.4 Performance 9
2.3.5 Security 9
2.3.6 Scalability 10

2.4 Pseudo Requirements 10
3 Final Architecture and Design Details 11

3.1 Overview 11
3.2 Subsystem Decomposition 12
3.3 Persistent Data Management 12
3.4 Access Control and Security 13
3.5 Global Software Control 14
3.6 Boundary Conditions 14

4 Development/Implementation Details 15
4.1 Object Design Trade-offs 15

4.1.1 Usability vs Feature Complexity 15
4.1.2 Supportability vs Performance 15
4.1.3 Maintainability vs Flexibility 15
4.1.4 Performance vs Consumption 16
4.1.5 Security vs User Convenience 16
4.1.6 Scalability vs Cost 16

4.2 Engineering Standards 16
4.3 Packages 17

4.3.1 Pages 17
4.3.2 Managers 19
4.3.3 Models 20

4.4 Class Interfaces 21
5 Test Cases and Results 42

2



5.1 Functional Testing 42
5.2 Nonfunctional Testing 59

6 Maintenance Plan and Details 68
6.1 Server Maintenance 68
6.2 Database Maintenance 69
6.3 Application Maintenance 69

7 Other Project Elements 70
7.1 Consideration of Various Factors in Engineering Design 70

7.1.1 Environmental Factors 70
7.1.2 Public Safety Factors 71
7.1.3 Economical Factors 71
7.1.4 Social Factors 71
7.1.5 Public Health Factors 71
7.1.6 Global Factors 71

7.2 Ethics and Professional Responsibilities 72
7.3 Teamwork Details 73

7.3.1 Contributing and functioning effectively on the team 73
7.3.2 Helping create a collaborative and inclusive environment 73
7.3.3 Taking the lead role and sharing leadership on the team 73
7.3.4 Meeting Objectives 74

7.4 New Knowledge Acquired and Applied 75
8 Conclusion and Future Work 76
9 Glossary 77
10 References 78

3



Detailed Design Report
Project Short-Name: BilRide

1 Introduction

Transportation has been a problem at Bilkent University since only some students

have a private vehicle, and rings are not at bus stops on time. Therefore, many

students suffer from this issue. Before the pandemic, gas prices were low so that

students could choose to come with their cars, the latency of the rings was

somehow acceptable, and even if carpooling was not expected, students could

choose to carpool as a transportation option. However, during and after the

pandemic, gas prices becomes high. Therefore, the students who choose their

private car as a transportation option start to choose public transportation. Also,

carpooling usage is at its lowest point due to health concerns, and the latency of

the rings is at its highest level. New students may not know about carpooling and

do not choose this option; they choose rings as a means of transportation.

However, the schedule of the rings can delay up to one hour. Therefore, the

hardship of the students who do not have car increases. Even though the

municipality of Ankara provides EGO buses as a solution, they only come

occasionally and become expensive for students. So, students only choose these

buses unless there is another option. As a result, we propose a solution to fix the

transportation problem. Our application is called BilRide. BilRide is a mobile

application aiming to solve the need for more ring shuttles, high gas prices, the

lack of hitchhiking culture problems, and increased carbon emissions.

This design project final report includes requirements details, final architecture

and design details, consisting of subsystem decomposition, persistent data

management and access control and security, global software control and

boundary conditions, development and implementation details which consists of

object design trade-offs, engineering standards, packages and class interfaces, test

cases divided as functional and non-functional and their results, maintenance plan

and details, other project elements and conclusion and future work.

4



2 Requirements Details

2.1 Overview

BilRide is a mobile app that aims to solve the issues caused by the lack of ring

shuttles and hitchhiking culture at Bilkent University. Also, it tries to transform

the transportation environment of Bilkent University by allowing individuals to

socialize with each other via the application. Thus, BilRide can pioneer the

change in transportation at Bilkent University.

There are some alternatives to our application, for example, BlaBlaCar [1].

Even though they are already in the market, they have some areas for

improvement in functionality and usability. We focus on these points more.

Besides, we will bring a new option to the pickup choice of the passenger.

BlaBlaCar offers only pickup points to the users. However, in our application,

the passenger can also be picked up from the current location and the pickup

points.

In addition, we want to bring to the market a sustaining innovation by adding

unique features. These are checking if the user is a Bilkent University member

to provide more safety, providing both carpooling options and ring bus ETA’s

for a complete solution to our users, and creating an environment for socializing

with exchanging information about their ride, Spotify playlists, and

gamification the experience with a badge system.

Thus, with the sustaining innovations, BilRide will be one of the appropriate

traveling apps for the students and alumni of Bilkent University.

2.2 Functional Requirements

2.2.1 Functionalities of the Application

2.2.1.1 All Users Functionalities

● The application should provide users with the logging-in and/or signing-up
options.

5



● The application should provide users with a map view, including some

information, such as routes, and the current location of the cars, passengers,

and shuttles.

● The application should provide a customizable user profile page for all users.

● The application should show the progress for each badge to each user.

● The application should show the earned badges in the user profiles.

● The application should show users how much gasoline they save after each

ride and how much gasoline they save in total on the profile page.

● The application should allow all users to create a team with other users to

create a common Spotify playlist and chat with each other before the ride.

● The application should allow all users to join open or private teams with an

invitation.

2.2.1.2 Passenger Functionalities

● The application should show nearby routes of the drivers to the user from the

map.

● The application should show the route, available quota, gender of the car’s

other passengers (if it is a problem for the user), whether the gasoline price is

needed, the driver’s rating, picture, and name for each nearby car to the user.

● The application should allow passengers to filter the routes according to their

gender preferences, the gas price and the total number of passengers in the car,

and the driver’s rating.

● The application should allow passengers to choose the gender of the other

passengers (if they need to) they wish to travel with.

● The application should allow passengers to send requests to nearby drivers

with a selection of pickup points or their current locations.

6



● The application should allow passengers to rate the driver and give feedback

about the journey after the ride.

● The application should show the user's current approximate location of the

shuttle.

● The application should show the occupancy rate of the upcoming shuttle.

2.2.1.3 Driver Functionalities

● The application should show the current requests from the passengers to the

driver with selected options, such as their pickup points, the gender they prefer

to travel with, and whether they pay some portion of the gasoline price.

● The application should suggest the driver's route with the least gas

consumption.

● The application should allow drivers to choose the number of people they

want to travel with and the route, then inform the system about the choices.

2.2.2 Functionalities of the Server

● The system should keep information about all drivers, such as name, Bilkent

ID number, rating, and routes informed to the app.

● The system should keep information about all passengers, such as name,

Bilkent ID number, and stops where they want to join the ride.

● The system should keep information about the shuttle, such as the estimated

location and occupancy rate.

● The system should keep the information about the teams, such as the member

information.

7



● The system should keep the requests for joining the team.

● The system should keep the location information about each user in case of

emergency, such as accidents.

2.3 Non-functional Requirements

In this section of the report, we will discuss the non-functional requirements of

the project in detail. We choose the non-functional requirements in the scope of our

application’s domain.

2.3.1 Usability

Usability is an important non-functional requirement for our application

because our application aims to reach everyone in the university. The application

should be easy to use by design. All of the main functionalities of our application

should be accessible by at most 3 touch gestures. The user interface will be designed

to be friendly to people from all backgrounds, regardless of their understanding of

technology. The application should not require any previous experience, and it should

be easy to learn for novice users. The user should feel satisfied while using the

application with intuitiveness.

2.3.2 Supportability

Supportability is another important non-functional requirement for our

application because our application should be able to work as designed on different

platforms. The application should be able to run on both Android (10.0 and above)

and iOS (13.0 and above) operating systems. The application should be able to run

smoothly with average hardware requirements. The application may require external

8



installation of Google App Services for Chinese versions of some Android Mobile

Phones.

2.3.3 Maintainability

The application should be developed with future improvements and extensions

in mind. Object Oriented Software Development techniques will be used during

implementation. The application’s codebase will be utilized with the version control

tools like Git, which enables our team to work on multiple branches. That's how our

team can continue development while the application is still usable. The deployment

of our application will be automated with the help of GitHub Actions; when a new

release happens, the action will automatically distribute the app package to the remote

servers where our users can update their apps on the air. That is how the application

will be easier to maintain.

2.3.4 Performance

The application should be loaded from a cold boot in less than thirty seconds.

In-app pages should load in under three seconds. The application should send the

user’s information to the application's backend servers in less than 3 seconds.

2.3.5 Security

In our application, there will be a database in which we store all the user’s

personal data, such as; student id, full name, password, mail address, route

information, etc. Sensitive ones, such as passwords, should be stored encrypted with a

non-reversible hash function in the application database. Other sensitive information

related to the user itself will be stored and processed according to the law

requirements, such as KVKK and GDPR. The backend functionality of the

application should be only accessible by the application itself. The application should
9



sanitize dangerous codes from the user-inputted fields and have a rate-limit

functionality to prevent DoS attacks. The password should be at least eight characters

in length. The application should automatically disable the user’s account if the user

tries to log in with the wrong password three times. The application should require

re-login if the user has not opened the application for more than five days or the user

changes the password. Since the application will not process transactions over it, there

will be no further security checks other than the implementation guide of 3rd party

payment provider. The application package will be compiled with some obfuscation

techniques as best practices to prevent the decompilation of our application package.

2.3.6 Scalability

Since the application’s implementation process was designed considering the

scale-out approach, scalability would not be difficult. The only thing we may have to

scale is the backend API, and the database in the future depends on the user count we

will have. The application backend will not use microservice for simplicity, but we

will try to Dockerize the API to enhance security and scalability.

2.4 Pseudo Requirements

● GitHub will be used throughout the project as a main Version Control

platform.

● Dart programming language and Flutter UI SDK will be used in the project's

frontend.

● Application should be able to run on both Android (+10.0) and iOS (+13.0)

platforms.

● Python programming language and Flask will be used for the backend side of

the project.

10



● To provide real-time communication (chatting), WebSockets will be used

while implementing the chat feature.

● To provide location services and maps, Google Maps API will be used.

3 Final Architecture and Design Details

3.1 Overview

BilRide will mostly work through text and location inputs from the users. It will

be a mobile app that works on Android and iOS operating systems. Though the

design mainly focuses on iOS mobile phones, it is also compatible with Android

since it is developed in Flutter. BilRide is a simple client-server application. It

uses Dockerized Flask backend with a Postgresql database to store and

manipulate the data, defined as the server, and users request the data from the

server using the Flutter application, defined as clients.

11



3.2 Subsystem Decomposition

Figure 1: Subsystem Decomposition Diagram

3.3 Persistent Data Management

There are mainly four types of data in the project. The first type is the ride data.

All necessary information about the ride, such as name, maximum capacity,

start location, end location, driver, and passengers, is stored in the cloud

database, and the data is seen by the user whenever the user is near the start

location. The second type is user data. Necessary information about the user,

such as name, surname, email, user type, and phone number, is stored in the

cloud database, while the authorization token of the user is stored in the local

device. When user-related action occurs in the application, such as logging in,

12



signing up, and editing a profile, the user data is taken from the cloud database

and it is used by the application. The third type of data is ring data. Ring times,

start and end locations are stored in the cloud database, and when the ring page

is opened by the user, the ring service takes this data. The last type of data is

chat data. All chat data is stored in the cloud server in encrypted format due to

the security concern of the users. Also, this data will never be shared with any

third party program because of the KVKK and GDPR. When the chat room is

opened, this encrypted data is decrypted by the service and loaded to UI via the

app manager.

3.4 Access Control and Security

We designed our application by using a security-by-design approach. Also, we

enforced that the application uses a zero-trust policy in its critical

infrastructures. In our application, there will be a database in which we store all

the user’s personal data, such as; student id, full name, password, mail address,

route information, etc. Sensitive ones, such as passwords, should be stored

encrypted with a non-reversible hash function in the application database. Other

sensitive information related to the user itself will be stored and processed

according to the law requirements, such as KVKK and GDPR [2]. The

application's backend functionality should only be accessible by the application

itself. We will be going to use all security-related flags in our HTTP requests.

Our API endpoints are behind the WAF, and they are protected by the JWT

authentication mechanism. The application should sanitize dangerous codes

from the user-inputted fields and have a rate-limit functionality to prevent DoS

attacks. The password should be at least eight characters in length. The

application should automatically disable the user’s account if the user tries to

log in with the wrong password three times. The application should require

re-login if the user has not opened the application for more than five days or the

user changes the password. Since the application will not process transactions

over it, there will be no further security checks other than the implementation

guide of 3rd party payment provider. The application package will be compiled

with some obfuscation techniques as best practices to prevent the decompilation

of our application package.

13



3.5 Global Software Control

While the application is used by many users, the same data might travel at the

same time to the users. Therefore, database and application can show some bugs

and lags. To prevent these unexpected conditions, the server is event-driven so

that server responses the client’s requests quickly and with the accurate data. It

is used for the client-server applications like our application, BilRide.

3.6 Boundary Conditions

● Initialization

Since Flutter is used to develop the project, it can be downloaded from Google

Play Store for Android and App Store for IOS devices. After downloading the

application, it is opened with clicking the icon that represents the application.

When it is opened first time, the landing page displays the brief information

about the application. After the landing page, the user can move to the login

page by clicking get started button. If the user signup previously, he/she can

log in via filling information in login page. If he/she has not signed up yet, can

register by clicking signup and navigates to the register page. After the login

process is done, the user see the home page with request permission for the

location pop up since it is the first time. After the permission is granted, the

user can navigate to chat, rings and profile page. Also, the user can create or

find pool according to his/her user type.

The internet connection is required to use location services and API services,

if the connection is not found, the connection not found page emerges with the

option of retry connection for the user.

● Termination

Very few data is kept on the device to give better performance. After the user

logs out from the application, these data is deleted and he/she goes back to the

login screen. If the user quits from the application by changing the screen and

comes back later, the token for the application is refreshed automatically so

that the user does not have to log in again.

14



● Failure

The users of BilRide may counter problems in limited conditions. Only bad or

lost internet connection and old phone may lead to some failures. The

application still has some bugs that can result in failures but it is resolved

when closing and opening the app. Also, if the server is down, the application

is crashed since the users cannot use any of the functions inside the

application.

4 Development/Implementation Details

4.1 Object Design Trade-offs

4.1.1 Usability vs Feature Complexity

Bilride is designed to be easy to use. Main features of the application are

accessed by at most 3 touch gestures. Therefore, features need to have limited

complexity at some point so that they remain easy to use. More complex features

may improve the functionality but the application may become challenging for

the users.

4.1.2 Supportability vs Performance

BilRide is aim to be supported by two large mobile platforms, Android and

iOS, so we used Flutter to develop our application. However, it did not

provide as good performance as the native development applications such as

Android Studio and Swift.

4.1.3 Maintainability vs Flexibility

BilRide is designed to be easy to maintain with version control tool Git,

deployment tool Github Actions and Object Oriented Software Development

techniques. We use common components for each page in the app so that it is

easier to maintain. However, customizing the application according to user

preferences consists of limited options, such as dark mode. Thus, the

application does not offer very customizable components and features.

15



4.1.4 Performance vs Consumption

Backend and frontend communication is designed to be established less than 3

seconds. However, it may vary according to the internet speed and the

performance of the mobile phone. It is compatible with the lowest possible

Android and iOS versions. However, since BilRide is designed to be give high

performance, it may lead to be high battery, memory or storage consumptions

for the mobile phones that has lower version of Android or iOS.

Consumptions are optimized but we may need to optimize more in the future.

4.1.5 Security vs User Convenience

Since the application needs to be store some sensitive information such as

location, mail address and passwords, it has to be secured. Verifications are

implemented for the security of the app. However, these security steps may

cause inconvenience users.

4.1.6 Scalability vs Cost

The application is designed to be scalable so that the users can use it 7/24.

However, when the user count of the application increases, it may lead to

additional costs for the cloud services, load balancers and infrastructure.

4.2 Engineering Standards

This report follows the Unified Modeling Language (UML) standards to

visualize the design of the system and IEEE referencing are used in the report

for all of the citations.

16



4.3 Packages

4.3.1 Pages

Figure 2: Pages Package

LandingPage: First page when the user opens the app first time. Displays

landing Page and gives a brief introduction about the application.

LoginPage: Displays login page for the users. App comes back to this screen

after the user logs out.

RegisterPage: Displays the register page. If the user does not have account,

he/she can move to this page from login page.

VerificationPage: Displays the verification page that allows users to enter the

verification code that is sent to their emails.

HomePage: Displays bottom navigation bar and list of pages for the users. It

allows to navigate to main page, chat page, ring page and account page.

MainPage: Displays home page for the users. Allows users to find pool, see

their rides and create pool.

TripHistoryPage: Displays the previous trips page for the users.

FAQPage: Displays the FAQ Page for the users.

17



MatchedRidesPage: Displays the map page with founded pools for

passengers.

MyRidesPage: Displays the map page with the pools that the user will attend

to or user has.

ChatPage: Displays the chat page with the users, teams and rides that the user

can chat with.

DetailedChatPage: Displays the user chat page that can send and receive

messages.

RingPage: Displays the ring page that allows users to see the upcoming rings

to the given stop.

AccountPage: Displays the account page that the users can see their

information and multiple options such as vehicles, addresses, previous trips,

FAQ, Feedback, Logout

EditProfilePage: Displays the edit profile page that allows users to change

their personal information.

MyVehiclesPage: Displays the vehicles page that the users can add, edit,

delete or see their vehicles.

MyAddressPage: Displays the address page that the users can add, edit,

delete or see their addresses.

RideRequestPage: Displays the ride request page for the rides of the drivers.

TeamsPage: Displays the team page that allows users to see and manage their

teams.

18



4.3.2 Managers

Figure 3: Managers Package

ApiClient: Manages the API requests inside the application and sets the

responses according to the models.

SizeController: Calculates the size for the components in the pages to be

compatible for each type of screen.

ConnectivityChecker: Checks the internet connection of the application.

19



4.3.3 Models

Figure 4: Models Package

Message: Contains information about the chat messages to build effectively as

chat item.

Ride: Contains the ride information to manage ride responses better

User: Contains the user information to manage the users effectively.

RideRequest: Contains the request information to manage the response better.

Ring: Contains the ring information to manage the rings better.

Team: Contains the team information to easily manage the team.

20



4.4 Class Interfaces

LandingPage First page when the user opens the app first time. Displays

landing Page and gives a brief introduction about the

application.

Methods _updateOnboardingDone() :
void

Updates the onboarding
completed status and
navigates to LoginPage.

_checkOnboardingDone() :
void

Checks if the onboarding is
completed. If it is
completed previously,
navigates to LoginPage.

VerificationPage Displays the verification page that allows users to enter

the verification code that is sent to their emails.

Methods checkCode() : void Checks whether the given code is
correct or not. If it is correct, it
navigates to LoginPage.

LoginPage Displays login page for the users. App comes back to this

screen after the user logs out.

Attributes emailController :

TextEditingController

Holds the email input from the user.

passwordController :

TextEditingController

Holds the password input from the
user.

21



Methods login() : Future<void> Checks the credentials and allow
user to log in to the application if
the credentials are correct.
Otherwise, displays error message.

RegisterPage Displays the register page. If the user does not have account,

he/she can move to this page from login page.

Attributes _emailController :

TextEditingController

Holds the email input from the
user.

_passwordController :

TextEditingController

Holds the password input from
the user.

_firstNameController :

TextEditingController

Holds the name input from the
user.

_lastNameController :

TextEditingController

Holds the last name input from
the user.

_phoneController :

TextEditingController

Holds the phone input from the
user.

Methods handleRegister: Future<void> Checks the credentials and
allow user to register to the
application if the credentials
are proper. Otherwise, displays
error message.

22



HomePage Displays bottom navigation bar and list of pages for the users.

It allows to navigate to main page, chat page, ring page and

account page.

Methods readySharedPreferences:
Future<void>

Gets the data from the storage to
ease the navigation between
pages.

TripHistoryPage Displays the previous trips page for the users.

Attributes prevTrips : List<Ride> The previous trips that
user has done.

FAQPage Displays the FAQ Page for the users.

MainPage Displays home page for the users. Allows users to find pool,

see their rides and create pool.

Attributes dateController :

TextEditingController

Holds the date input from the user.

timeController :

TextEditingController

Holds the time input from the user.

startLocController :

TextEditingController

Holds the start location input from the
user.

endLocController :

TextEditingController

Holds the end location input from the
user.

23



mapController :

GoogleMapController

Holds the map controller for Google
Maps.

Methods _selectDate() :
Future<void>

Sets the date for selected value.

_selectTime() :
Future<void>

Sets the time for selected value.

processFindPool() :
Future<void>

Gets the matched pool results for the
passenger.

processOfferPool() :
Future<void>

Sets the values for creating ride for
the driver.

prepareMyRides() :
Future<void>

Gets the rides for the driver and
passenger. Also, get the pending
requests for the passenger.

_determinePosition() :
void

Sets the camera location according to
the current location of the user.

_currentLocation() :
void

Gets the current location of the user.

processLocation() :
Future<void>

Gets the new location if the user
change his/her location.

createRide(name:
String): void

Creates the ride with given ride name
and the parameters from the
controllers.

MatchedRidesPage Displays the map page with founded pools for

passengers.

Attributes matchedRides: List<Ride> Holds the ride
results from the
MainPage.

date: String Holds the date
from the
MainPage.

24



myRideRequests: List<Request> Holds the
requests for the
rides for the
passenger.

scrollController: ScrollController Control variable
for the scroll.

requestedRides: List<int> Holds the
requested rides
for the passenger
to help to track.

Methods getDriverInfo():
Future<Map<String,dynamic>>

Gets the driver
info of the ride.

MyRidesPage Displays the map page with the pools that the user will

attend to or user has.

Attributes matchedRides :

List<Ride>

Holds the rides of the
driver from the MainPage.

myRideRequests :

List<Request>

Holds the requests for the
rides of the driver.

scrollController :

ScrollController

Control variable for the
scroll.

Methods getDriverInfo() :
Future<Map<String,dyna
mic>>

Gets the driver info of the
ride.

ChatPage Displays the chat page with the users, teams and rides

that the user can chat with.

25



Attributes rides : List<Ride> Holds the rides for the ride
chat.

users : List<User> Holds the users for the
private chatr.

teams : List<Team> Holds the teams for the
team chat.

Methods readySharedPreferences()
: Future<void>

Sets the lists for the chat
items and
DetailedChatPage.

DetailedChatPage Displays the user chat page that can send and receive

messages.

Attributes roomName: String Holds the name of the
room for chat.

socketIO: SocketIO Holds the SocketIO
instance that allows
users to chat

textEditingController:

TextEditingController

Holds the chat message

messages: List<Message> Holds the lists of
messages to set the
message history

Methods onReceiveMessage(): void Receives messages of
the room.

sendMessage(): void Sends message to the
room or other user.

26



RingPage Displays the ring page that allows users to see the

upcoming rings to the given stop.

Attributes stations : List<Ring> Holds the stations for ring
tracking and filtering.

Methods setRings() : Future<void> Sets the stations for ring
tracking.

TeamsPage Displays the team page that allows users to see and

manage their teams.

Attributes teams : List<Team> Holds the teams for the
ride chat.

Methods addTeam(): void Creates a team for the user.

leaveTeam(): void Leaves from the team if
the user is member of the
team.

deleteTeam(): void Deletes the team if the user
is the owner of the team.

addPhoto(): void Adds team photo for the
team.

inviteTeam(): void Invites users to the team.

goToChat(): void Navigates to the team chat.

EditProfilePage Displays the edit profile page that allows users to

change their personal information.

27



Attributes user: User Holds the user object that
will be edited

userId: int Holds the id of user.

Methods readySharedPreferences()
: Future<void>

Sets the userId and user
object to display and edit.

MyVehiclesPage Displays the vehicles page that the users can add, edit,

delete or see their vehicles.

Attributes vehicle: Vehicle Holds the vehicle object to
display, add or delete.

Methods addVehicle() : void Adds the vehicle and
driver can select the
vehicle for the pool.

deleteVehicle() : void Deletes the vehicle from
the driver.

MyAddressesPage Displays the address page that the users can add, edit,

delete or see their addresses.

Attributes addresses : List<Address> Holds the addresses to
display, add or delete.

Methods addAddress() : void Adds address and user can
select the address as the
start or location.

deleteAddress() : void Deletes the address from
the user.

28



RideRequestsPage Displays the ride request page for the rides of the

drivers.

Attributes requests : List<Request> Holds the requests to
display, add or delete.

Methods approveRequest(requestId
: int) : void

Approves the request for
the ride of the driver.
Drivers can only approve
their rides.

deleteRequest(requestId:
int): void

Deletes the request of the
passenger. Passengers can
only their requests.

rejectRequest(requestId:
int): void

Rejects the request for the
ride of the driver. Drivers
can only reject their rides.

AccountPage Displays the account page that the users can see their

information and multiple options such as vehicles,

addresses, previous trips, FAQ, Feedback, Logout

Attributes userType : String Holds the type of the user
to create driver or
passenger specific menu.

userId : int Holds the userId for
authentication.

user : User Holds the user object to
retrieve some general
information.

Methods readySharedPreferences()
: Future<void>

Sets the attributes when
the page is loading.

29



ApiClient Manages the API requests inside the application and

sets the responses according to the models.

Attributes _dio: Dio Holds Dio instance to
make API requests.

Methods editUrl(url : String, id :
int) : String

Edits the url for user
requests.

editRoute(url : String,
loc1 : LatLng, loc2 :
LatLng) : String

Edits the url for route
requests.

editDriverUrl(url : String,
driver_id : int) : String

Edits the url for driver
requests.

editPassengerUrl(url :
String, passenger_id : int)
: String

Edits the url for passenger
requests.

editTeamUrl(url : String,
team_id : int) : String

Edits the url for team
requests.

setVerifyUrl(url : String,
code : int) : String

Edits the url for
verification requests.

editRideUrl(url : String,
ride_id : int) : String

Edits the url for ride
requests.

editRequestUrl(url :
String, request_id : int) :
String

Edits the url for ride
request requests.

refresh() : Future<void> Refreshes the auth token
inside the application.

login(email : String,
password : String) :
Future<void>

Allows user to log into the
application.

getCurrentUser() :
Future<User>

Gets the current user
profile and stored locally.

getUserProfileData(id :
int) : Future<Map<String,
dynamic>>

Gets the user data from the
id parameter as Map
Property.

30



getDriverProfileData(driv
er_id : int) :
Future<Map<String,
dynamic>>

Gets the profile data of the
driver with given driver_id

registerUser(data :
Map<String, String>) :
Future<Map<String,
dynamic>>

Registers the user for the
application with given
data.

fetchAllRides() :
Future<List<dynamic>>

Gets all rides from the
database.

fetchAllRideswithParams(
data : Map<String,
dynamic>) :
Future<List<dynamic>>

Gets the filtered rides from
the database.

fetchAllTeams() :
Future<List<dynamic>>

Gets all teams of the user
from the database.

fetchAllRings() :
Future<List<dynamic>>

Gets all rings from the
database.

fetchRelatedUsers() :
Future<List<dynamic>>

Gets the related users,
teams and rides of the user.

activateUser(code :
String) : Future<bool>

Activates the user.

sendFeedback(feedback :
String, user_email :
String) : Future<bool>

Sends feedback with
feedback and contact
information to developer
team.

getRoute(loc1 : LatLng,
loc2 : LatLng) :
Future<List<LatLng>>

Gets the polyline data
between two locations.

passengerRideRequest(pa
ssengerId : int, rideId :
int) : Future<Request>

Gets the request of
passenger for the ride.

getRideRequestforDriver(
driverId : int, rideId : int)
: Future<List<Request>>

Gets the list of requests for
the ride of the driver.

acceptRideRequest(driver
Id : int, requestId : int) :

Accepts the request for the
ride.

31



Future<String>

rejectRideRequest(driverI
d : int, requestId : int) :
Future<String>

Rejects the request for the
ride.

handleCreateRide(data :
Map<String, dynamic>) :
Future<bool>

Creates a ride with given
data for the driver.

handleCreateTeam(name :
String) : Future<bool>

Creates a team with a
given name for the user.

handleDeleteTeam(id :
int) : Future<bool>

Deletes the team that has
the id of given id.

uploadFile(id : int,
filePath : String, fileName
: String) : Future<bool>

Uploads a picture for the
team.

getPassengerRideRequest
s() :
Future<List<Request>>

Gets the list of requests of
the passenger.

editRideDetails(driverId :
int, rideId : int, data :
Map<String, dynamic>) :
Future<String>

Edits the ride parameters
for given ride id.

fetchAllUsers() :
Future<List<User>>

Gets all users from the
database.

getRidesForPassenger() :
Future<List<Ride>>

Gets all rides of the
passenger.

getRidesForDriver() :
Future<List<Ride>>

Gets all rides of the driver.

inviteToTeam(user_id :
int, team_id : int) :
Future<bool>

Sends team invitation to a
user.

SizeController Calculates the size for the components in the pages to

be compatible for each type of screen.

32



Methods getScreenWidth() : double Gets the screen width of
the device.

getScreenHeight() :
double

Gets the screen height of
the device.

calculateHeight() : double Calculates the screen
height with some ratio.

calculateWidth() : double Calculates the screen
width with some ratio.

calculateFontSize() :
double

Calculates the font size
with some ratio.

isLandscape() : bool Returns true if the screen
is landscape.

isPortrait() : bool Returns true if the screen
is portrait.

isAndroid() : bool Returns true if the device
is Android.

isIOS() : bool Returns true if the device
is iOS.

ConnectivityChecker Checks the internet connection of the application.

Methods checkStatus() : void Check the internet
connection status.

hasNetwork() :
Future<bool>

Indicates whether there is
an internet connection or
not.

33



Message Contains information about the chat messages to build

effectively as chat item.

Attributes content : String Holds the content of the
message.

from : int Holds the user_id that is
indicated where the
message comes.

created_at : DateTime Holds the creation date of
the message

Methods fromJson(message :
Map<String, dynamic>)

Creates message object
from json data.

fromSocket(message :
Map<String, dynamic>)

Creates message object
from socket data.

Ride Contains the ride information to manage ride responses

better.

Attributes id : int Holds the id of the ride.

driver_id : int Holds the driver_id of the
ride.

name : String Holds the name of the ride.

startName : String Holds the start name of the
ride.

endName : String Holds the end name of the
ride.

endLoc : LatLng Holds the end location of
the ride.

34



startLoc : LatLng Holds the start location of
the ride.

maxPassenger : int Holds the max passenger
of the ride.

startDate : String Holds the start date of the
ride.

startTime : String Holds the start time of the
ride.

payment_confirmed : bool Holds the payment status
of the ride.

price : double Holds the price of the ride.

distance : double Holds the distance of the
ride.

passengers :

List<dynamic>

Holds the passengers of
the ride.

requests : List<dynamic> Holds the requests of the
ride.

polylines : List<LatLng> Holds the directions of the
ride.

Methods getId() : int Gets the id.

getDriver_id() : int Gets the driver id.

getName() : String Gets the name.

getStartName() : String Gets the start name.

setStartName(startName:
String) : void

Sets the start name to new
value.

35



getEndName () : String Gets the end name.

getEndLoc() : LatLng Gets the end location.

getStartLoc() : LatLng Gets the start location.

getMaxPassenger(): int Gets the maximum
passenger.

getStartDate() : String Gets the start date.

getStartTime() : String Gets the start time.

getPayment_confirmed() :
bool

Gets the payment status.

getPrice(): double Gets the price.

getDistance() : double Gets the distance.

getPassengers() :
List<dynamic>

Gets the passengers.

getRequests() :
List<dynamic>

Gets the requests.

getPolylines() :
List<LatLng>

Gets the directions.

fromJson(data : Map
<String, dynamic>)

Creates a ride object from
json data.

toJson() : Map<String,
dynamic>

Converts the ride object to
json data.

36



User Contains the user information to manage the users

effectively.

Attributes userId: int Holds the id of the user.

email : String Holds the email of the
user.

created_at : String Holds the creation date of
the user.

updatedAt: String Holds the last update date
of the user.

name : String Holds the name of the
user.

lastName : String Holds the last name of the
user.

isActive : bool Holds the activity status of
the user.

phone : String Holds the phone number
of the user.

is_admin : bool Holds the admin status of
the user.

user_type : String Holds the user type of the
user.

bio : String Holds the short description
of the user.

username : String Holds the username of the
user.

rides : List<dynamic> Holds the rides of the user.

requests: List<dynamic> Holds the requests of the
passenger.

profile_pic : String Holds the profile picture
url of the user.

37



Methods getUserid(): int Gets id of the user.

getEmail() : String Gets email of the user.

getCreatedAt() : String Gets creation date of the
user.

getUpdatedAt(): String Gets last update date of the
user.

getName() : String Gets name of the user.

getLastName() : String Gets last name of the user.

getIsActive() : bool Gets activity status of the
user.

getPhone() : String Gets phone number of the
user.

getls_admin() : bool Gets admin status of the
user.

getUser_type() : String Gets the user type of the
user.

getBio(): String Gets the bio of the user.

getUsername() : String Gets the username of the
user.

getRides() :
List<dynamic>

Gets the rides of the user.

getProfile_pic() : String Gets the profile picture url
of the user.

getRequests():
List<dynamic>

Gets the requests of the
passenger.

38



fromJson(data : Map
<String, dynamic>)

Creates a user object from
json data.

toJson(): Map <String,
dynamic>

Converts user object to
json data.

Request Contains the request information to manage the

response better.

Attributes id : int Holds the id of the request.

rideId : int Holds the ride id of the
request.

status : String Holds the status of the
request.

passengerId : int Holds the passenger id of
the request.

Methods getId() : int Gets the id of the request.

setId(id : int) : void Sets the id of the request.

getRideId() : int Gets the ride id of the
request.

setRideld (rideId) : void Sets the ride id of the
request.

getStatus() : String Gets the status of the
request.

setStatus(status : String) :
void

Sets the status of the
request.

getPassengerld(): int Gets the passenger id of
the request.

39



setPassengerld(passengerI
d: int) : void

Sets the passenger id of the
request.

fromJson(data : Map
<String, dynamic>)

Creates a request object
from json data.

toJson() : Map<String,
dynamic>

Converts a request object
to json data.

Ring Contains the ring information to manage the rings

better.

Attributes id : int Holds the id of the ring.

to : String Holds the arrival place
name of the ring.

from : String Holds the departure place
name of the ring.

time : String Holds the departure time
of the ring.

day : String Holds the departure day of
the ring.

duration : double Holds the duration of the
ring.

Methods getId() : int Gets the id of the ring.

getTo() : String Gets the arrival place
name of the ring.

getFrom() : String Gets the departure place
name of the ring.

getTime() : String Gets the departure time of
the ring.

40



getDay() : String Gets the departure day of
the ring.

getDuration() : double Gets the duration of the
ring.

fromJson (data : Map
<String, dynamic>)

Creates a ring object from
json data.

Team Contains the team information to easily manage the

team.

Attributes id : int Holds the id of the team.

invited _users:

List<dynamic>

Holds the invited user list
of the team.

name : String Holds the name of the
team.

owner_id : int Holds the owner id of the
team.

photo_url : String Holds the photo url of the
team.

playlist_url : String Holds the playlist url of
the team.

users: List<dynamic> Holds the member user list
of the team.

owner : Map <String,

dynamic>

Holds the owner
information of the team.

Methods getId() : int Gets the id of the team.

41



getInvited_users() :
List<dynamic>

Gets the invited users list
of the team.

getName() : String Gets the name of the team.

getOwner_id() : int Gets the owner id of the
team.

getPhoto_url() : String Gets the photo url of the
team.

getPlaylist_url() : String Gets the playlist url of the
team.

getUsers() :
List<dynamic>

Gets the user list of the
team.

getOwner() : Map<String,
dynamic>

Gets the owner
information of the team.

fromJson(data : Map
<String, dynamic>)

Creates a team object from
json data.

5 Test Cases and Results

5.1 Functional Testing

Test ID: BR01

Test Type: Functional

Summary: Verify that the user can log in the application successfully

Procedure:

● Launch BilRide.
● Check if the text fields on the login page are editable, visible, and selectable.
● Check if the login button is clickable and visible.
● Check if the user sees the error box after filling in text fields with incorrect

credentials and clicking the login button.
● Check if the user can see the homepage after filling in the text fields with the

correct credentials and clicking the login button.

Expected Results:

42



● User can see the homepage after filling in text fields with the correct
credentials and clicking the login button.

● User can see the error box after filling text fields with incorrect credentials.

Severity: Critical
Date Tested: 19/05/23
Result: Pass 2, Fail 0

Test ID: BR02

Test Type: Functional

Summary: Verify that a new user can successfully sign up for the application

Procedure:

● Launch BilRide.
● Click on the "Sign Up" button on the homepage
● Fill in all the required fields for registration, including name, email, password,

and phone number
● Click on the "Register" button

Expected Results:

● The user is registered successfully, navigated to the verification page.

Severity: Critical
Date Tested: 19/05/23
Result: Pass 1, Fail 0

​​Test ID: BR03

Test Type: Functional

Summary: Verify the email verification mechanism successfully works

Procedure:

● Check if the text fields in the verification page are editable, visible, and
selectable.

● Check if the continue button is clickable and visible.
● Check if the user sees the error message after filling the text field with the

incorrect code and clicking the continue button.
● Check if the user can see the approval message and the login after filling the

text field with the correct code and clicking the continue button.

Expected Results:

● User can see the approval message and the login page after filling the text field
with the correct code and clicking the continue button.

● User can see the error message after filling the text field with incorrect code.

43



Severity: Major
Date Tested: 19/05/23
Result: Pass 2, Fail 0

​​Test ID: BR04

Test Type: Functional

Summary: Verify “Forgot Password” page elements’ visibility, editability,
selectability, clickability, error, and approval messages.

Procedure:

● Check if the text fields in the forgot password page are editable, visible, and
selectable.

● Check if the continue button is clickable and visible.
● Check if the user sees the error message after filling all text fields incorrectly

and clicking the continue button.
● Check if the user sees the error message after filling the email code text field

with incorrect code and other text fields correctly and clicking the continue
button.

● Check if the user sees the error message after not filling retype password field
same as the new password field and filling in the email code correctly, and
clicking the continue button.

● Check if the user sees the error message after filling new password not the
same as retype password field and filling in the email code correctly, and
clicking the continue button.

● Check if the user can see the approval message and the login after filling text
fields correctly and clicking the continue button.

Expected Results:
● User can see the approval message and the login page after filling in text fields

correctly and clicking the continue button.
● User can see the error message after filling the email text field with incorrect

code and other text fields correctly and clicking the continue button.
● User can see the error message after filling new password text field not the

same as retype password text field and filling in the email code correctly and
clicking the continue button.

● User can see the error message after filling retype password text field not the
same as new password text field and filling email code correctly and clicking
the continue button.

● User can see the error message after filling all text fields incorrectly and
clicking continue button.

Severity: Major
Date Tested: 19/05/2023
Result: Pass 5, Fail 0

44



Test ID: BR05

Test Type: Functional

Summary: Verify that the user can be redirected to the main page and validate that all
the required elements for the main functionality are visible.

Procedure:

● Check if the user logs in to the application successfully.
● Verify that the user is redirected to the main page.
● Validate that the main page contains the following elements:
● A map displaying the user's current location and the location of nearby rides.
● "Find Pool" button to search for available rides.
● "Offer Pool" button to create a new ride.
● "All Rides" button to view all rides in the system.
● “Current Location” button to mark the user’s current location to map

Expected Results:

● The system successfully redirected the user to the main page.
● All elements on the main page should be visible and correctly displayed.
● The map is responsive and can map the user's current location.
● Validation messages should be displayed if there are any errors in loading the

page.

Severity: Major
Date Tested: 19/05/23
Result: Pass 4, Fail 0

Test ID: BR06

Test Type: Functional

Summary: Verify that the user can successfully offer a pool

Procedure:

● Launch BilRide.
● Log in to the system using valid credentials
● Click on the “Offer Pool” option from the slider menu
● Fill in all the start location, drop location, date and time, and maximum seat

numbers
● Click on the “Offer Pool” button

Expected Results:

● A new pool is created successfully and displayed on the user's dashboard of
“My Rides”.

Severity: Major
45



Date Tested: 19/05/23
Result: Pass 1, Fail 0

Test ID: BR07

Test Type: Functional

Summary: Verify that the user can successfully browse a pool and view results.

Procedure:

● Launch BilRide.
● Log in to the system using valid credentials
● Click on the “Find Pool” option from the slider menu
● Fill in all the start location, drop location, date and time, and maximum seat

numbers
● Click on the “Find Pool” button

Expected Results:

● Results of the query is executed and displayed on user’s dashboard. The app
should display a list of query results with all the necessary details about the
pools.

Severity: Major
Date Tested: 19/05/23
Result: Pass 1, Fail 0

Test ID: BR08

Test Type: Functional

Summary: Verify that users’ rides are displayed successfully to the user.

Procedure:

● Launch BilRide.
● Log in to the system using valid credentials
● Clicking the “My Rides” button from the main page.

Expected Results:

● The user should be able to log in to the application successfully.
● The "See My Rides" page should be displayed.
● All available rides should be displayed on the page. Each ride should display

starting point, destination, date and time, and the number of available seats.
● Rides should be listed chronologically, with the most recent ride appearing

first.

46



● Users should be able to filter rides by start and end locations, date and time,
and the number of available seats.

● Users should be able to click on a ride to view more details, including driver
information and driver rating.

Severity: Major
Date Tested: 19/05/23
Result: Pass 5, Fail 1
Notes: Filtering is not implemented. Expected result 5 failed.

Test ID: BR09

Test Type: Functional

Summary: Verify that the user can join an existing pool.

Procedure:

● Launch BilRide.
● Log in to the system using valid credentials
● Search for an existing pool using the “Find Pool” option or browse through

available rides by clicking the “All Rides” button.
● Click on a ride from the list
● Click on the "Join" button for the desired route.
● Click on the "Join Ride" button

Expected Results:

● User successfully requests the selected ride, and a confirmation message is
displayed on the screen.

Severity: Major
Date Tested: 19/05/23
Result: Pass 6, Fail 0

Test ID: BR10

Test Type: Functional

Summary: Verify that the user can approve a pool join request.

Procedure:

● Launch BilRide.
● Log in to the system using valid credentials
● Go to “Profile Page” from the bottom menu
● Click “My Rides”
● Click “Incoming Requests”
● Approve a request by clicking the “Approve” button for request.

Expected Results:

● The request status changes from "Pending" to "Approved"
● The user who requested the ride is notified of the approval

47



Severity: Major
Date Tested: 19/05/23
Result: Pass 1, Fail 1
Notes: The user who requested the ride is not notified of the approval.

Test ID: BR11

Test Type: Functional

Summary: Verify that the user can decline a pool join request.

Procedure:

● Launch BilRide.
● Log in to the system using valid credentials
● Go to “Profile Page” from the bottom menu
● Click “My Rides”
● Click “Incoming Requests”
● Declined a request by clicking the “Decline” button for a request.

Expected Results:

● The request status changes from "Pending" to "Declined"
● The user who requested the ride is notified of the decline

Severity: Major
Date Tested: 19/05/23
Result: Pass 1, Fail 1
Notes: The user who requested the ride is not notified of the rejection.

Test ID: BR12

Test Type: Functional

Summary: Verify that the user can cancel a pool join request.

Procedure:

● Launch BilRide.
● Log in to the system using valid credentials
● Go to “Profile Page” from the bottom menu
● Click “My Rides”
● Click “Pending Requests”
● Cancel a request by clicking the “Cancel” button.

Expected Results:

48



● The request status changes from "Pending" to "Canceled"
● The user to whom the request was sent should be notified of the cancellation.

Severity: Major
Date Tested: 19/05/23
Result: Pass 1, Fail 1
Notes: The user to whom the request was sent is not notified of the rejection.

Test ID: BR13

Test Type: Functional

Summary: Verify that the user can edit his/her rides.

Procedure:

● Launch BilRide.
● Log in to the system using valid credentials
● Go to “Profile Page” from the bottom menu
● Click “My Rides”
● Click on the “Edit Ride” button
● Update the details of the pool
● Click on the "Save Changes" button.
● Verify that the pool details have been updated.

Expected Results:

● The user should be able to edit ride details successfully and the updated
information should be displayed correctly.

Severity: Minor
Date Tested: 19/05/2023
Result: Pass 1, Fail 0

Test ID: BR14

Test Type: Functional

Summary: Verify that the user can delete his/her rides.

Procedure:

● Launch BilRide.
● Log in to the system using valid credentials
● Go to “Profile Page” from the bottom menu
● Click “My Rides”
● Select the route to be canceled from the list
● Click on the "Cancel" button
● Confirm the cancellation by providing a reason for cancellation (if required)

49



Expected Results:

● The selected route is canceled successfully and removed from the user's “My
Rides” list.

● Any other users who had booked seats on the route are notified about the
cancellation.

Severity: Major
Date Tested: 19/05/23
Result: Pass 1, Fail 1
Notes: Users are not notified when the cancellation happens.

Test ID: BR15

Test Type: Functional

Summary: Verify that the user can cancel his/her rides.

Procedure:

● Launch BilRide.
● Log in to the system using valid credentials
● Go to “Profile Page” from the bottom menu
● Click “My Rides”
● Select the route to be canceled from the list
● Click on the "Cancel" button
● Confirm the cancellation by providing a reason for cancellation (if required)

Expected Results:

● The selected route is canceled successfully and removed from the user's “My
Rides” list.

● Driver who owns the ride is notified about the cancellation.

Severity: Major
Date Tested: 19/05/23
Result: Pass 1, Fail 1
Notes: Driver who owns the ride is not notified about the cancellation.

Test ID: BR16

Test Type: Functional

Summary: Verify if the system displays the ring timetable and estimated location
accurately.

Procedure:

● Launch BilRide.
● Log in to the system using valid credentials
● Click on the “Ring” button from the bottom menu

50



● Verify that the timetable displayed shows the correct departure and arrival
times of the ring for each stop.

● Click on a specific stop on the timetable to view the estimated arrival time at
that stop.

● Verify that the estimated time of arrival is displayed accurately.

Expected Results:

● The system should display the ring timetable accurately.
● The timetable should show the correct departure and arrival times for each

stop.
● The estimated time of arrival at each stop should be displayed accurately.

Severity: Critical
Date Tested: 19/05/23
Result: Pass 2, Fail 1
Notes: The estimated time of arrival is not seen for each stop.

Test ID: BR17

Test Type: Functional

Summary: Verify that the user can view their profile page after logging in.

Procedure:

● Launch BilRide.
● Log in to the system using valid credentials
● Go to “Profile Page” from the bottom menu
● Verify that the user is redirected to their profile page.

Expected Results:

● The user should be able to view their profile page without any errors.

Severity: Major
Date Tested: 19/05/23
Result: Pass 1, Fail 0

Test ID: BR18

Test Type: Functional

Summary: Verify that users can edit their profile information.

Procedure:

● Launch BilRide.
● Log in to the system using valid credentials
● Click on the “Profile” button from the bottom menu

51



● Click on the user name.
● Edit the user’s profile information.
● Click on the "Save" button.
● Verify that the changes are saved successfully.

Expected Results:

● The user's profile information should be updated without any errors.

Severity: Minor
Date Tested: 19/05/23
Result: Pass 0, Fail 1
Notes: Profile information is not editable.

Test ID: BR19

Test Type: Functional

Summary: Verify that the user can edit their vehicle information.

Procedure:

● Launch BilRide.
● Login with valid credentials.
● Click on the “Profile” button from the bottom menu
● Click on the "My Vehicles" button.
● Edit the user's vehicle information.
● Click on the "Save Changes" button.
● Verify that the changes are saved successfully.

Expected Results:

● The user's vehicle information should be updated without any errors.

Severity: Minor
Date Tested: 19/05/23
Result: Pass 0, Fail 1
Notes: Vehicle information is not editable.

Test ID: BR20

Test Type: Functional

Summary: Verify that users can edit their saved addresses.

Procedure:

● Launch BilRide.
● Login with valid credentials.

52



● Click on the “Profile” button from the bottom menu
● Click on the “Manage Address” button from the list menu.
● Click on the "Edit Saved Addresses" button.
● Edit the user's saved addresses.
● Click on the "Save" button.
● Verify that the changes are saved successfully.

Expected Results:

● The user's saved addresses should be updated without any errors.

Severity: Minor
Date Tested: 19/05/23
Result: Pass 0, Fail 1
Notes: Saved address information is not editable.

Test ID: BR21

Test Type: Functional

Summary: Verify that the user can see their trip history.

Procedure:

● Launch BilRide.
● Login with valid credentials.
● Click on the “Profile” button from the bottom menu
● Click on the "Previous Trips" button from the list menu.
● Verify that the user can see their trip history.

Expected Results:

● The user should be able to see their trip history without any errors.

Severity: Minor
Date Tested: 19/05/23
Result: Pass 0, Fail 1
Notes: Previous Trips button is not clickable.

Test ID: BR22

Test Type: Functional

Summary: Verify if the user can edit teams.

53



Procedure:

● Launch BilRide.
● Login with valid credentials.
● Click on the “Profile” button from the bottom menu
● Click on the “My Teams” option from the list menu.
● Update the team information.
● Save the updated information.
● Verify that the information is updated and displayed correctly.

Expected Results:

● The user should be able to edit teams successfully.
● The updated information should be displayed correctly.

Severity: Minor
Date Tested: 19/05/23
Result: Pass 2, Fail 0

Test ID: BR23

Test Type: Functional

Summary: Verify if the user can create teams

Procedure:

● Launch BilRide.
● Login with valid credentials.
● Click on the “Profile” button from the bottom menu
● Click on the “My Teams” option from the list menu.
● Click on the “Create Team” button.
● Write team information.
● Select users to add to the team.
● Click on the “Create” button.
● Verify the team is created successfully, and the user is directed to the team

dashboard

Expected Results:

● The user should be able to edit teams successfully and the updated information
should be displayed correctly.

Severity: Minor
Date Tested: 19/05/23
Result: Pass 1, Fail 0

Test ID: BR24

Test Type: Functional

54



Summary: Verify if the owner sends an invitation to user for joining a team

Procedure:

● Launch BilRide.
● Login with valid credentials.
● Click on the “Profile” button from the bottom menu
● Click on the “My Teams” option from the list menu.
● Click on the “Invite” button which is indicated as “+” sign at the top right

corner.
● Browse from the users list
● Click “Invite” to the user from the users list.
● Verify the invitation is created and sent successfully and the user is notified.

Expected Results:

● Invitation is created and sent successfully.
● The user is notified.

Severity: Minor
Date Tested: 19/05/23
Result: Pass 1, Fail 1
Notes: The user is not notified when the invitation is created and sent.

Test ID: BR25

Test Type: Functional

Summary: Verify if the user can leave a team successfully.

Procedure:

● Launch BilRide.
● Login with valid credentials.
● Click on the “Profile” button from the bottom menu
● Click on the “My Teams” option from the list menu.
● Browse from the teams list
● Click "Yes" to confirm leaving the team.
● Verify that the user is no longer a member of the team.

Expected Results:

● The user can leave the team successfully.
● The user should not have any access to the team after leaving.

Severity: Minor
Date Tested: 19/05/23
Result: Pass 2, Fail 0

55



Test ID: BR26

Test Type: Functional

Summary: Verify if the user can delete a team successfully.

Procedure:

● Launch BilRide.
● Login with valid credentials.
● Click on the “Profile” button from the bottom menu
● Click on the “My Teams” option from the list menu.
● Verify that the “Delete” option is only displayed for the teams where the user

is in the owner position.
● Verify that the team is deleted and all of the users are removed from the team.

Expected Results:

● The team is successfully deleted from the system.
● Team no longer appears in any “Teams” list.
● All team members are notified that the team has been deleted.

Severity: Minor
Date Tested: 19/05/23
Result: Pass 2, Fail 1
Notes: Team members are not notified that the team has been deleted. Expected result
3 failed.

Test ID: BR27

Test Type: Functional

Summary: Test if the users can access the FAQ page and validate that the
information is relevant and useful.

Procedure:

● Launch BilRide.
● Login with valid credentials.
● Click on the “Profile” button from the bottom menu
● Click on the "FAQ" button from the list menu.

Expected Results:

● The user should be able to access the FAQ section.
● Verify that the information is displayed correctly.
● Validate the “FAQ” page has relevant and useful information.

Severity: Minor
Date Tested: 19/05/23
Result: Pass 3, Fail 0

56



Test ID: BR28

Test Type: Functional

Summary: Test if the users can log out from the application successfully.

Procedure:

● Launch BilRide.
● Login with valid credentials.
● Click on the “Profile” button from the bottom menu.
● Click on “Logout”.
● Verify if the user logged out successfully.

Expected Results:

● The user should be logged out of the app successfully.

● The user should be redirected to the login page.

Severity: Major
Date Tested: 19/05/23
Result: Pass 2, Fail 0

Test ID: BR29

Test Type: Functional

Summary: Test whether users can see the chat page.

Procedure:

● Check if the user logs in to the application successfully.
● Check if the chat button at the bottom navigation bar is selectable and visible.
● Check if the user’s chat is visible and clickable as a list view item on the chat

page.

Expected Results:

● User can log in to the application successfully.
● User can see the chat button at the bottom navigation bar.
● User can click the chat button.
● User can see the chat page.
● User can see the chats as a list view item on the page.

Severity: Major
Date Tested: 19/05/23
Result: Pass 5, Fail 0

57



Test ID: BR30

Test Type: Functional

Summary: Test whether users can enter the chat room.

Procedure:

● Check if the user logs in to the application successfully.
● Check if the chat button at the bottom navigation bar is selectable and visible.
● Check if the user’s chats are visible and clickable as a list view item on the

chat page.
● Check if the selected chat is visible as a separate page from previous

messages.

Expected Results:

● User can log in to the application successfully.
● User can see the chat button at the bottom navigation bar.
● User can click the chat button.
● User can see the chat page and the chats as list view item in the page.
● User can see the selected chat room with previous messages.

Severity: Major
Date Tested: 19/05/23
Result: Pass 5, Fail 0

Test ID: BR31

Test Type: Functional

Summary: Test if the user can send the message to another user.

Procedure:

● Check if the user logs in to the application successfully.
● Check if the chat button at the bottom navigation bar is selectable and visible.
● Check if the user’s chats are visible and clickable as a list view item on the

chat page.
● Check if the selected chat is visible as a separate page with previous messages.
● Check if the text field at the bottom of the page is visible, editable, and

selectable.
● Check if the send button at the right of the text field is visible and clickable.
● Check if the user filled the text field with characters.
● Check if the user clicks send button.
● Check if the application sends the message to the server.

Expected Results:

58



● User can log in to the application successfully.
● User can see the chat button at the bottom navigation bar.
● User can click the chat button.
● User can see the chat page and the chats as list view items on the page.
● User can see the selected chat room with previous messages.
● User can select and type any message in the text field at the bottom of the

page.
● User can click send button at the right of the text field.
● Server can receive the message sent by the user.

Severity: Major
Date Tested: 19/05/23
Result: Pass 8, Fail 0

Test ID: BR32

Test Type: Functional

Summary: Test if the users can receive messages from other users.

Procedure:

● Check if the user logs in to the application successfully.
● Check if the chat button at the bottom navigation bar is selectable and visible.
● Check if the user’s chats are visible and clickable as a list view item on the

chat page.
● Check if the selected chat is visible as a separate page.
● Check if the user receives the messages sent by the other user in the chat

room.

Expected Results:

● User can log in to the application successfully.
● User can see the chat button at the bottom navigation bar.
● User can click the chat button.
● User can see the chat page and the chats as list view items on the page.
● User can see the selected chat room.
● User can receive messages sent by the other user in the chat room.

Severity: Major
Date Tested: 19/05/23
Result: Pass 6, Fail 0

5.2 Nonfunctional Testing

Test ID: BR33

59



Test Type/Category: Non-Functional / Performance Testing

Title: Load Testing

Procedure of Load Testing:

- Check the response time the user receives while using the application and
evaluate the response time.

- Check the response time of the application when multiple users are trying to
use the application in the actual environment.

- Compare the response times and evaluate the maximum load of the
application.

- Evaluate the performance of the database load before the application starts
behaving unexpectedly or the application starts working slower.

Expected Results:

- Response time is lower than 1 second.
- Response time does not increase by 5 seconds when multiple users try to use

the application simultaneously.
- Application should support a load of at least 1000 users simultaneously.
- Database load should remain as lower as possible to prevent any unexpected

work of the application.

Severity: Major
Date Tested: 19/05/23
Result: Pass 4, Fail 0

Test ID: BR34

Test Type/Category: Non-Functional / Performance Testing

Title: Stress Testing

Procedure of Stress Testing:

- Check the system’s performance on low memory or low disc space on clients
and servers. Repeat this test with different numbers of memory and disc space.

- Check the system’s performance when multiple users try to take the same
action/transaction on the same data.

- Check the system’s performance when multiple clients are connected to the
servers with different workloads.

- Evaluate the maximum load the application can handle.

Expected Results:

- The system should work properly under low memory or low disc space
circumstances.

- The system should not allow multiple users to take the same transaction on the
same data.

60



- The system should work properly when multiple clients are connected to the
servers with different workloads.

- The maximum load of the application should be proportional to the average
user actively using the application.

Severity: Major
Date Tested: 19/05/23
Result: Pass 4, Fail 0

Test ID: BR35

Test Type/Category: Non-Functional / Performance Testing

Title: Volume and Capacity Testing

Procedure of Volume and Capacity Testing:

- Check the behavior of the system when a large amount of data is involved
with the software and note the number of application failures.

- Evaluate the database size according to the application usage and the amount
of data to store.

- Determine whether the application's capability will be enough in future loads
or not.

Expected Results:

- The application should behave normally when more than the average amount
of data is involved in the software.

- The database size should be proper according to the application usage and the
number of users.

Severity: Major
Date Tested: 19/05/23
Result: Pass 2, Fail 0

Test ID: BR36

Test Type/Category: Non-Functional / Performance Testing

Title: Recovery Testing

Procedure of Recovery Testing:

- Check whether there is a way to return back when the application behaves
unexpectedly/abnormally.

Expected Results:

61



- The user can go back to the normal state when there is an error and there
should not be any data lost.

Severity: Critical
Date Tested: 19/05/23
Result: Pass 1, Fail 0

Test ID: BR37

Test Type/Category: Non-Functional / Performance Testing

Title: Reliability Testing

Procedure of Reliability Testing:

- Evaluate the time (or time estimation) that takes when the user is trying to go
back to normal state.

- Check when the user returns to the normal state, are there any data lost or not.

Expected Results:

- The user can go back to the normal state when there is an error and there
should not be any data lost.

- Returning to the normal state should not be long enough to make the user wait
too long.

Severity: Major
Date Tested: 19/05/23
Result: Pass 2, Fail 0

Test ID: BR38

Test Type/Category: Non-Functional / Security Testing

Title: Access to Application

Procedure of Access to Application Testing:

- Use the whole application with the admin role and analyze which actions are
authorized and which are not. Examine whether your role has permission to
take an action for which it is not authorized.

- Repeat the previous test with Driver and Passenger roles and examine the role
and the permission relation to whether there is a security leak or not.

Expected Results:

- Users in different roles should not be able to perform actions for which they
are not authorized.

Severity: Critical
62



Date Tested: 19/05/23
Result: Pass 1, Fail 0

Test ID: BR39

Test Type/Category: Non-Functional / Security Testing

Title: Data Protection

Procedure of Data Protection Testing:

- Check the roles (admin, driver, and passenger) and their rights in the field of
reading and writing the data. Inspect if a user in the passenger role can access
the privileges of the driver role.

- Check if the data is kept encrypted in the database, such as the users'
password.

- Examine the user credentials. Test cases are, checking whether the correct
user's profile is opened when the user is logged into the application. After
logging in, check that the correct data is read on the previous rides' view page.

Expected Results:

- Different users should not be able to both read and edit data for which they are
not authorized.

- The user must not have the privileges of another user.
- The user should not be able to access the information of another user without

his/her authorization.

Severity: Critical
Date Tested: 19/05/23
Result: Pass 3, Fail 0

Test ID: BR40

Test Type/Category: Non-Functional / Security Testing

Title: Brute-Force Attack

Procedure of Brute-Force Attack Testing:

- Check if the application allows trying to login with different passwords in a
row using the same user id.

- Check and examine the number of login attempts before the account is
blocked.

Expected Results:

- In 3 wrong login attempts, the account should be blocked for a certain period
of time.

63



Severity: Critical
Date Tested: 19/05/23
Result: Pass 1, Fail 0

Test ID: BR41

Test Type/Category: Non-Functional / Security Testing

Title: SQL injection and XSS

Procedure of SQL injection and XSS Testing:

- As with login or sign-in pages, check whether the input received from the user
is filtered before being stored in the database.

- Check if the size of the inputs is limited.
- Check if the input formats are checked. For example, when an input other than

email format is entered where the email address is to be entered, examine
whether the correct error is given.

- Check if there is an XSS filter when the user injects malicious script as input.

Expected Results:

- The user must not be able to inject malware as input.
- The user's inputs must pass XSS filters before being sent to the backend and

database.
- Input type and data must be compatible with each other.

Severity: Critical
Date Tested: 19/05/23
Result: Pass 3, Fail 0

Test ID: BR42

Test Type/Category: Non-Functional / Security Testing

Title: Session Management

Procedure of Session Management Testing:

- Check if the session is terminated after a certain amount of time has elapsed.
- Check the maximum lifetime of the sessions.
- Check if the user can have multiple simultaneous sessions.
- Evaluate the session termination duration when the user logs out from the

application.

Expected Results:

- If the user has been inactive for a certain period of time, the session must be
terminated.

64



- A user should have at most one session simultaneously.

Severity: Critical
Date Tested: 19/05/23
Result: Pass 1, Fail 2
Notes: Session refresh is implemented but the session is not terminated when the user
is inactive for a while

Test ID: BR43

Test Type/Category: Non-Functional / Security Testing

Title: Error Handling

Procedure of Error Handling Testing:

- Check for HTTP error codes whether error codes are accurate according to the
case or not.

- Check if error messages include sensitive and critical information.

Expected Results:

- Error messages should not contain sensitive and critical information. It should
not reflect information about the structure in the backend.

- Error messages should not contain information about endpoints and the
backend functions to which they are directed.

Severity: Critical
Date Tested: 19/05/23
Result: Pass 2, Fail 0

Test ID: BR44

Test Type/Category: Non-Functional / Usability Testing

Title: Remote Usability Testing

Procedure of Remote Usability Testing:

- Check if the users can use the application in different locations in Turkey.

Expected Results:

- The application supports working with the locations inside Turkey.

Severity: Major
Date Tested: 19/05/23
Result: Pass 1, Fail 0

65



Test ID: BR45

Test Type/Category: Non-Functional / Usability Testing

Title: Automated Usability Testing

Procedure of Automated Usability Testing:

- Test scripts are written to test the use case of the application.
- The application is tested with scripts.
- The report of the output of each script is created.

Expected Results:

- The test result supports all use cases of the application.
- The report indicates the expected output of each script.

Severity: Critical
Date Tested: 19/05/23
Result: Pass 0, Fail 2
Notes: Automated test cases were not written.

Test ID: BR46

Test Type/Category: Non-Functional / Usability Testing

Title: Expert Review

Procedure of Expert Review Testing:

- Mobile application experts test the demo application.
- Experts give feedback about the usability of the application.
- They try to find a loophole in the application.
- They make a report about the application, including loopholes and feedback.

Expected Results:

- The application creates zero loopholes.
- The expert report does not contain any loopholes.
- Report can contain some improvement tips.

Severity: Major
Date Tested: 19/05/23
Result: Pass 0, Fail 3
Notes: Expert review was not completed.

Test ID: BR47

Test Type/Category: Non-Functional / User Interface Testing
66



Title: Evaluating the GUI

Procedure of User Interface Testing:

- Check if the user can use the application without any confusion.
- Check if the data is traversed correctly between pages.

Expected Results:

- GUI should be understandable and every user should be able to use the
application easily.

- Data should be correct in every page.
- User interface should not annoy the user.
- User interface should be consistent for its look.

Severity: Major
Date Tested: 19/05/23
Result: Pass 4, Fail 0

Test ID: BR48

Test Type/Category: Non-Functional / Compatibility Testing

Title: Compatibility Testing of Mobile Devices

Procedure of Compatibility Testing:

- Check if the user can use the application with different mobile phones and
different platforms such as Android and iOS.

Expected Results:

- The application should be compatible with different mobile devices platforms
such as Android and iOS.

Severity: Critical
Date Tested: 19/05/23
Result: Pass 1, Fail 0

Test ID: BR49

Test Type/Category: Non-Functional / Documentation Testing

Title: Documentation Testing

Procedure of Documentation Testing:

- Check if the stated documents, read me files, release notes, user guides are
provided properly.

67



Expected Results:

- User manuals and other documents should be provided properly.
- All of the documents should be clear and understandable.

Severity: Critical
Date Tested: 19/05/23
Result: Pass 2, Fail 0

Test ID: BR50

Test Type/Category: Non-Functional / Instability Testing

Title: Instability Testing

Procedure of Instability Testing:

- Check if the components of the applications are installed correctly on the
mobile devices.

- Check if the application validates the sufficiency of the disc space.

Expected Results:

- Installation should be done without any missing component.
- The application should validate the insufficient disc space.

Severity: Major
Date Tested: 19/05/23
Result: Pass 2, Fail 0

6 Maintenance Plan and Details

6.1 Server Maintenance

Throughout the development and deployment of BilRide, we have meticulously

maintained the server infrastructure to ensure optimal performance and availability.

We have implemented a comprehensive server maintenance plan, which includes

regular monitoring of the server's health and performance. This proactive approach

allowed us to quickly identify and address any issues that arose, ensuring a smooth

user experience. We have also prioritized server security by promptly applying

security updates and patches to protect against potential vulnerabilities. By optimizing
68



server performance through techniques like caching and load balancing, we have

optimized response times and enhanced the scalability of the app. Additionally, we

have implemented backup and disaster recovery procedures, regularly backing up data

and testing the restoration process to mitigate the risk of data loss. To ensure zero

downtime, we implemented health check mechanisms inside each API server, our

mechanism constantly checks the availability of the servers. If any of the available

servers seem unhealthy, our mechanism automatically updates the Nginx load

balancer we put in front of the API cluster. This way, we’re not exposing our servers

to the public internet. Our servers are currently located in one region, but we plan to

distribute them to multi-region multi-zone architecture. Also, we are using a hardened

version of Ubuntu 20.04 to minimize the risks in terms of unauthorized access and

lateral movement. Only 2 people have direct SSH access to our API cluster, and our

private keys are encrypted in a way that is only decrypted using biometric

authentication (Yubikey).

6.2 Database Maintenance

As part of the development process for BilRide, we have given utmost importance to

the maintenance of our database. Regular backups have been performed to ensure data

integrity and availability. These backups have been securely stored offsite,

minimizing the risk of data loss. We have focused on optimizing the database

performance by fine-tuning queries, managing indexes, and refining the database

schema. By implementing these optimization techniques, we have improved the

efficiency of data retrieval and storage, resulting in a smooth and responsive user

experience. We have also implemented monitoring and alert mechanisms to detect and

address any performance issues or anomalies. Furthermore, we have prioritized data

security by implementing access controls, encryption, and auditing mechanisms to

safeguard user data. Also, our database cluster is inside the auto-scaling group.

6.3 Application Maintenance

Having successfully completed the development and deployment of BilRide, we

understand the importance of ongoing application maintenance. Our maintenance plan

includes continuous bug tracking and resolution to address any reported issues

promptly. By utilizing bug-tracking and ticket-management software, we have

69



efficiently tracked and resolved bugs to ensure the stability and reliability of the app.

We are also using a version control system to manage the source code, enabling easy

tracking of changes and facilitating collaboration among team members. Through

thorough testing and a well-defined deployment strategy, we have ensured that

updates and releases are seamless and free of bugs. We have actively sought user

feedback, providing channels for users to report issues and suggestions. This feedback

has been invaluable in improving the app and enhancing the user experience.

Additionally, we have provided timely support to users, addressing their queries and

concerns promptly. We have also prioritized compatibility by staying up-to-date with

the latest technologies and releasing updates to ensure BilRide remains compatible

with different devices and operating system versions. To ensure our users consistently

enjoy the best possible user experience, we have implemented an update enforcement

screen within BilRide. This screen is designed to ensure that all users stay up-to-date

with the latest version of the app, as updates often include important bug fixes,

performance enhancements, and new features. By implementing this enforcement

screen, we aim to maintain a cohesive user base that benefits from the most recent

improvements and optimizations. It allows us to provide a seamless and secure app

experience by ensuring that all users are on a consistent and up-to-date version of

BilRide. This approach not only enhances the user experience but also helps us

deliver the best support and address any reported issues more effectively, as we can

focus on supporting the most recent version of the app. We believe that this update

enforcement screen is crucial for keeping BilRide at its highest standard and

providing our users with a reliable and enjoyable mobile app experience.

7 Other Project Elements

7.1 Consideration of Various Factors in Engineering Design

7.1.1 Environmental Factors

Our project addresses environmental factors such as environmental

sustainability and benefits. In our analysis, we took what is best in terms of

environmental benefit into consideration.

70



7.1.2 Public Safety Factors

Safety is a highly important factor for BilRide. In our thinking and

consideration phase, we highly considered protecting users' personal data,

which are protected by “Kişisel Verilerin Korunumu Kanunu” (KVKK). Our

project must be highly secure because the user data is confidential and protected

by data protection regulations. Also, we considered situations that may put our

users’ safety at risk, like careless drivers, users performing unacceptable

behaviors when participating in carpooling, and users with serious disciplinary

actions. We came up with solutions to these kinds of situations when analyzing

and designing our project.

7.1.3 Economical Factors

From an economic point of view, we need to address how much a ride will

possibly cost and a recommended price to share between rider and passengers.

Our application will be free to use, and we provided our business model with an

optional payment between riders and passengers.

7.1.4 Social Factors

We also took social factors into consideration. In analysis and requirements, we

developed features that can simulate a social platform like sharing playlists,

commenting and rating, achievements, chat rooms, and forming teams.

7.1.5 Public Health Factors

Public health is also a factor that affects our thinking. Since we are affected by a

pandemic, we may put more importance on public health if there are situations

that put users at risk later, considering the situation of the pandemic.

7.1.6 Global Factors

Since our project focused on the transportation of Bilkent University

specifically, global factors are not as important as other factors discussed.

71



Effect level Effect

Public health 8 Users should be notified when there is a concern of health.

Public safety 10 Users need to be notified and protected in any case that disrupts
safety that may be caused by the driver or passenger.

Public welfare 4 Public welfare is connected with public health and public safety
regarding our topic.

Global factors 1 Our scope is Bilkent University and its individuals.

Cultural factors 1 Our users consist of only Bilkent University users, but if we
experience any cultural factor, we must consider it can affect our
analysis and design later on.

Social factors 9 There are many features that will boost the sociality of the
application, as discussed above.

Economical
factors

7 Payment between drivers and passengers will be optional, and the
amount will be decided by users.

Environmental
factors

10 Main focus is to do what is best for the environment.

Table 1: Factors that can affect analysis and design.

7.2 Ethics and Professional Responsibilities

During the analysis phase, we considered two potential ethical and

professional issues regarding our application. First one is the privacy of users which

we see as both a professional and ethical responsibility of ours. Any private user data

should be safe and secure to data leakages. This confidential data that is protected by

“KVKK” should be safe and secure in any case of data leakage. Also, there may be

some cases in which users participate in a ride from or to their houses. To reduce any

problems caused by this inevitable sharing of private information, we decided to

provide a feedback and complaint system in order to detect problematic users. In

addition, we decided to get information from Bilkent University database if we can to

detect if any user has a complaint or disciplinary action in the university database in

order to prevent any harm to our users. Our second responsibility is providing users to

choose which users they want to travel with. We find it useful to show some

information about users, especially ratings and complaints. Additionally, we are

planning to put a gender option because users can have some preferences related to

the person who they will share a ride with.

72



7.3 Teamwork Details

7.3.1 Contributing and functioning effectively on the team

The most important factor of proper teamwork is communication. As a team, we

scheduled face-to-face meetings. Also, we scheduled zoom meetings when we

could not meet in the physical environment. Responsibilities were distributed to

each team member considering the workload and previous experiences.

However, the responsibilities increased, and they were changed before the end

of the first semester due to the progress of the project and the change in plans

and schedule. When we worked on the project, some plans changed.

Nevertheless, it kept everything the same in terms of the contribution and

effectiveness of the members. We have worked together before, so it is easier to

decide and communicate based on our previous experiences.

In addition, we created a schedule for each sub-work in the project to avoid

trying to complete the project on the last day. Though some sub-works changed

in the first semester, we mostly did not extend the due date of tasks.

7.3.2 Helping create a collaborative and inclusive environment

The project's works are distributed among members, but this does not mean we

work only on the tasks given. When one of the members has a problem or needs

assistance with the task, one of the other team members helps with the problem.

If it is a big problem, all of the members are here to help. Additionally, after

work is done, it is reviewed by other members using Github. Also, we used

some common test cases which we defined at the beginning of the first

semester, and each member used these test cases before pushing the changes to

Github. Thus, we made sure that there were minimum mistakes in the code.

Even if there is a mistake, other members can solve the mistakes.

7.3.3 Taking the lead role and sharing leadership on the team

In the analysis report, we introduced the work packages in which each member

is involved in the leadership of each package. However, there are some changes

in the distribution of work packages. Even if there is a change in work

packages, the distribution of leadership among team members is still equal. The
73



work packages and their distribution among team members can be found in

Table 2.

WP# Work package title Leader Members involved
WP1 Project Specification Report Doğukan Everyone
WP2 Analysis Report Turgut Everyone
WP3 Backend Implementation Turgut Everyone
WP4 Permission for the Data of

Bilkent Members
İdil Everyone

WP5 Frontend Implementation Doğukan Everyone
WP6 Mid Testing Funda Everyone
WP7 Demo Presentation İdil Everyone
WP8 Implementation of Shuttle

Schedule
Dilay Everyone

WP9 Detailed Design Report Dilay Everyone
WP10 Final Testing Turgut Everyone
WP11 Final Report Funda Everyone
WP12 Final Presentation Doğukan Everyone

Table 2. List of Work Packages

7.3.4 Meeting Objectives

The goals outlined in previous reports have been effectively achieved.

However, certain modifications have been made to certain features and

backend development. In the backend development, Flask was preferred

instead of Django in the backend development, because Flask is easier to use,

has a lighter structure, and can also have better performance. Additionally,

Since collecting data is not easy, it was decided to utilize the Google Maps

API, which assists in creating location-based application and website content.

For example, when Django was first used, it was noticed that there were

modules that took up unnecessary space for the project due to the large

codebase size. Since our project is not only web-based, Flask's small codebase

size, flexible and scalable features provided a great advantage in terms of

backend development.

In addition, It would not be easy for the team to calculate the route hours for

each ring and collect data accordingly, and the accuracy of the collected data

would not give precise information. Since the route of each ring is clear, it

74



took less time to use Estimated Time using Google Maps API instead of

collecting data, as drivers can determine routes at the same time. This decision

allowed us to integrate various features provided by Google Maps, including

static and dynamic maps, high-quality directions, and routes generated with

real-time traffic updates, as well as the ability to leverage rich location data.

7.4 New Knowledge Acquired and Applied

As BilRide, we aimed to design an app for the members of Bilkent University,

including students, academics, and employees, with a focus on sustainability

and effectiveness. The most crucial factor of the project was to accurately

calculate and predict the estimated travel times for drivers and passengers,

reducing transportation-related difficulties to a minimum through a user-friendly

app. Therefore, we studied examples from different applications, created assets,

and aimed for user satisfaction.

Another significant factor was to research the bus services passing through the

stops within Bilkent and their schedules. We needed to determine the locations

of the stops within Bilkent, identify the bus services passing through these

stops, and know their routes. We also gathered the opinions of users who

hitchhike, observed where they most commonly hitchhike within the school,

and which routes they prefer. Taking into account the most preferred stops

within the campus and the areas where hitchhiking is possible, we ensured the

progress of the project. Additionally, considering one of the problems that

drivers face during their journey, which is the price of gasoline/diesel, we

attempted to introduce a tipping system that could benefit passengers. This way,

the driver's financial burden is reduced while they continue on their route, and

passengers can overcome transportation issues.

Since Django, which we decided to use in the backend of the application,

occupies a lot of space and there are unused modules in it, we decided to use

Flask, which takes up less space. Since data collection to be used to determine

estimated time for each route will take a lot of time and doing this for each ring

75



will not give an accurate result, we decided to use the API of Google Maps and

optimized the routes in our project in this way.

8 Conclusion and Future Work

In the end of the project, we created a proper app to solve the transportation

problems in Bilkent University by completing the main functionality and main

goals of the project. With the help of Flutter, as we planned, BilRide can run on

both Android and IOS devices. For Bilkent students and alumni, we can propose

a new application that solves the transportation problem in Bilkent University.

Although we have completed the main functionality, the application may face

with some bugs. Also, deployment of the application on the mobile platforms is

not cheap, Therefore, due to these reasons, we could not publish our application.

But, even if we could not solve all the bugs, we can publish the application in the

future. To resolve all the bugs in the app, we continue working on this project in

the future. Also, the application always open to improve further since the world

does not stand still. We can always improve our application to meet the

requirements of the future world.

During implementation, we encounter many challenges. The most hard challenge

was time management. However, we overcome this issue as a team by planning

the actions, deadlines and continuous improvement. We learned a lot during the

project and improved our coding skills. Besides, we improved our social skills as

well, such as teamwork, leadership and time management. Even if we can think

negatively from time to time, we can always find a positive side to overcome the

issues and thoughts.

76



9 Glossary

● Ring shuttle/ring: The buses that take Bilkent students to the city center or
neighborhoods.

● EGO: The official bus service of the Municipality of Ankara.
● Hitchhike: to travel by securing free rides from passing vehicles.
● Carpool: an arrangement in which a group of people commutes together by

car.
● Dockerize: to pack, deploy, and run applications using Docker containers.
● GDPR: General Data Protection Regulation.
● KVKK: Kişisel Verileri Koruma Kanunu (Personal Data Protection Law).
● DoS Attack: denial of service attack meant shutting down a machine or

network, making it inaccessible to its intended users.
● backend: the part of a computer system or application that is not directly

accessed by the user, typically responsible for storing and manipulating data.
● API: Application Programming Interface.
● UI: User Interface.
● FAQ: Frequently Asked Questions.
● WAF: Web Application Firewall.
● IEEE: Institute of Electrical and Electronics Engineers.

77



10 References
[1] “BlaBlaCar Hakkında”.
https://support.blablacar.com/hc/tr/categories/360002754379-BlaBlaCar-hakk%C
4%B1nda. [Accessed: May 19, 2023]

[2] “Personal Data Protection Law”.
https://www.kvkk.gov.tr/Icerik/6649/Personal-Data-Protection-Law. [Accessed:
May 19, 2023]

78

https://support.blablacar.com/hc/tr/categories/360002754379-BlaBlaCar-hakk%C4%B1nda
https://support.blablacar.com/hc/tr/categories/360002754379-BlaBlaCar-hakk%C4%B1nda
https://www.kvkk.gov.tr/Icerik/6649/Personal-Data-Protection-Law

